Vibration Spectrum and Normal Coordinate Analysis of the Pyrothiophosphates Na₄P₂S₇, Na₂FeP₂S₇, and Ag₄P₂S₇

Frank Menzel, Lothar Ohse, and Wolfgang Brockner*

Institute of Inorganic and Analytical Chemistry, Technical University of Clausthal, D-3392 Clausthal-Zellerfeld, FRG

Received 15 March 1990.

ABSTRACT

 $Na_4P_2S_7$, $Na_2FeP_2S_7$, and $Ag_4P_2S_7$ were prepared by elemental synthesis at high temperatures and were characterized by vibration spectra and differential thermal analysis (DTA). A normal coordinate analysis was performed for $P_2S_7^4$. Additional vibration frequencies indicate the presence of the decathiotriphosphate anion $P_3S_{10}^{5}$. The formation of higher thiophosphates of the type $P_nS_{3n+1}^{(n+2)-}$ with $n \ge 4$ cannot be excluded.

INTRODUCTION

In metal sulphide-phosphorus sulphide systems, coupled Lewis acid-base and redox reactions take place at elevated temperatures [1, 2]. Thiophosphate species with pentavalent phosphorus dominate in such systems with stoichiometry $PS_3^-:S^{2-}=1:0-1:1$ as coupled Lewis acid-base equilibria, according to

$$P_2S_6^{2-} \rightleftharpoons 2 PS_3^{-} \rightleftharpoons P_2S_7^{4-} \rightleftharpoons 2 PS_4^{3-} \qquad (1)$$

A more general formulation can be written as

$$n(PS_3^-) + S^{2-} \rightleftharpoons P_n S_{3n+1}^{(n+2)^-}$$
 (2)

Therefore, the existence of higher thiophosphates must be considered. The $P_2S_6^{2-}$ dimer and the PS_3^{-}

monomer [3-6] as well as the PS_4^{3-} anion [7, 8] are well characterized. The $P_2S_7^{4-}$ anion could be obtained as a connecting link in crystalline $Ag_4P_2S_7$ [9].

The kind of thiophosphate species formed is not only dependent on stoichiometry of element mixtures for high temperature syntheses but is also dependent on the cation and its oxidation state against sulfur. Univalent cations are able to compose the thiophosphates with $P_2S_6^{2-}$, $P_2S_7^{4-}$, and PS₄³ groups. Trivalent cations form almost complete orthothiophosphates of the type Me(III)PS₄. Di- and tetravalent cations (preferably from 3d metals) form hypothiophosphates of the types Me₂(II)P₂S₆ and Me(IV)P₂S₆, respectively. Under certain conditions different cations with differing oxidation states can react to a thiophosphate type according to the sum of their oxidation states, e.g., Tl(I)Sn(II)PS₄ and $Cs(I)Eu(II)PS_4$ [5, 8]. In this context $Na_2FeP_2S_7$ could be obtained. There is an evident similarity between thiophosphates and isoelectronic AlCl₃-Cl⁻ systems (e.g. PS₄-AlCl₄). This leads to the discussion of $P_3S_{10}^{5-}$ species and $P_nS_{3n+1}^{(n+2)-}$ $(n \ge 4)$ homologues.

EXPERIMENTAL

The title compounds were prepared using high temperature element synthesis of stoichiometric amounts in evacuated quartz ampoules. To avoid a violent reaction of sodium with sulfur, phosphorus, and phosphorus sulphides, the elements were inserted separately into the reaction ampoules (Figure 1) so that a slow reaction could then proceed through the gas phase. After tempering for several hours at 100°C the temperature was slowly in-

^{*}To whom correspondence should be addressed.

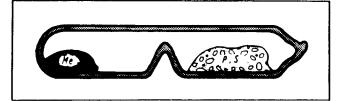
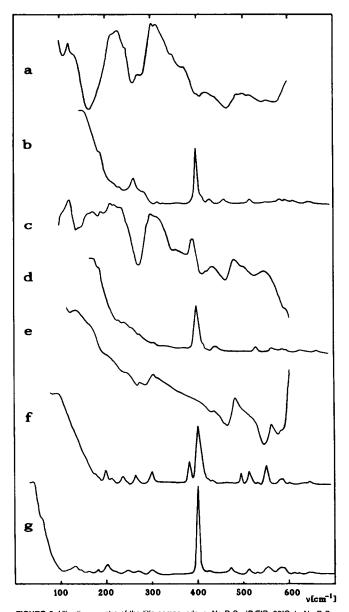


FIGURE 1 Quartz ampoule for preparation of alkali thiophosphates.

creased (20°C/h) to 900°C. The molten reaction mixture was kept at 900°C for 6 h, then was cooled down in a linear temperature gradient of 35°C/h (24 h). The Na₄P₂S₇ charge yielded a homogeneous white product, which decomposed by moisture to H₂S and unidentified phosphates. Na₂FeP₂S₇ was obtained as an orange-colored homogeneous product, which also decomposed by moisture with a peculiar foaming of the substance and H₂S odor. Ag₄P₂S₇ was obtained as a pale yellow homogeneous crystalline cake out of a stoichiometric mixture by heating to 900°C (5 h), 10 h reaction time at this temperature, and cooling slowly (35°C/h). Ag₄P₂S₇ is not decomposed by moisture.

The Raman spectra were recorded with a Coderg PH1 spectrometer and Laser light excitation (Krypton-Ion-Laser, Spectra Physics 165/01; 647.1 nm). The registration of the Raman scattering was carried out perpendicular to the incident Laser beam. Function and modified sample compartment of the spectrograph used have already been published [10, 11]. The infrared (FIR/IR) spectra were obtained from thiophosphate-PE pellets with a Beckman FS 720 interferometer. DTA data have been determined with self-built equipment (Quartz glass reference, ±5°C at 1000°C).

RESULTS


Infrared and Raman spectra of the title compounds are shown in Figure 2. The vibrational frequencies (cm⁻¹) are summarized in Table 1 along with their intensities and assignment. Raman melt spectra could not be obtained because of an intense red glow and dark coloring.

DISCUSSION AND NORMAL COORDINATE *ANALYSIS*

The $P_2S_7^{4-}$ group with C_{2v} symmetry is the relevant vibration spectroscopical unit in pyrothiophosphates of the title compounds. In Ag₄P₂S₇ this unit is characterized by X-ray structure determination [9]. $P_2S_7^{4-}$ is isoelectronic with $Al_2Cl_7^-$. A point group analysis of $P_2S_7^{4-}$ based on the $C_{2\nu}$ model (Figure 3) gives the following results:

$$\Gamma_{\text{vib}} (C_{2\text{v}}) = 7A_1(IR,RE) + 4A_2(RE) + 4B_1(IR,RE) + 6B_2(IR,RE)$$
 (3)

It is difficult to assign all 21 vibration bands without polarization data; therefore, a vibrational anal-

FIGURE 2 Vibration spectra of the title compounds. a. Na₄P₂S₇, IR/FIR, 20°C; b. Na₄P₂S₇, RE, 20°C; c. Na₂FeP₂S₇, IR/FIR, 20°C; d. Na₂FeP₂S₇, RE, 20°C; e. Ag₄P₂S₇, IR/FIR, 20°C; f. Ag₄P₂S₇, RE, -196°C; g. Ag₄P₂S₇, RE, 20°C.

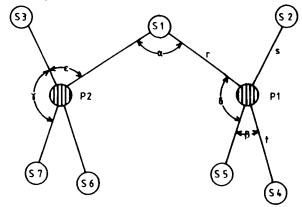
ysis was carried out. The assignment of the P₂S₇⁴ vibration bands is based on their positions in the stretching, bridge, and deformation regions known from similar thiophosphates and phosphorus sulphides. Furthermore, the selection rule and the band intensities are taken as arguments. Only the $P_2S_7^{4-}$ spectrum was found experimentally in the title compounds; thus, site symmetry splitting could not be applied.

In the Na₂S-P₄S₁₀ system, solid and molten samples of Na₄P₂S₇ stoichiometry were prepared and characterized by Raman spectroscopy [12]. These Raman spectra are dominated by a very strong band at 399 cm⁻¹ in agreement with the Na₄P₂S₇ spectrum shown in Figure 2b.

TABLE 1	Raman and FIR/IR Frequencies (cm ⁻¹) of the Title Compounds with Intensities and Their
Assignmer	nt.

Assignment (C _{2v})	$Ag_4P_2S_7$			Na ₂ FeP ₂ S ₇		Na₄P₂S ₇	
	FIR/IR	RE _(-196°C)	RE	FIR/IR	RE	FIR/IR	RE
ν ₁₅ (Β ₁)				107 w		112 m	
$\nu_6(A_1)$	113 vw		122 vw	134 m		134 w	
$\nu_{21}(B_2)$	128 m		135 m	146 vw		146 vw	
$\nu_{10}(A_2)$		170 w	168 vw	168 vw		166 vs	
$\nu_5(A_1)$	167 m	185 w	185 m	182 m	183 w	185 vw	183 m
$\nu_{20}(B_2)$	100	200 s	203 s	216 vw		210 vw	215 vw
$\nu_{19}(B_2)$	198 w	220 m	218 w	221 vw	232 m		230 vw
$\nu_{14}(B_1)$	000	245 m	(246 vw	248 m	246 vw	248 wsh
$\nu_9(A_2)$	239 w	250 wsh	247 mb {		262 w	263 s	260 s
$\nu_4(A_1)$	268 m	270 m	273 m	273 vs	278 m	282 m	280 m
$\nu_{13}(B_1)$	287 m	300 m	300 m	309 w	303 m	310 w	310 vw
,,,				348 m		344 w	
		375 s	377 vw	372 m		368 w	
$\nu_3(A_1)$		399 vs	399 vs	409 w	404 vs	399 vw	398 vs
5(1)		415 wsh	415 wsh		418 wsh	408 w	110 msh
$\nu_{18}(B_2)$	431 m	435 vw	435 w	424 vw	427 wsh	443 vw	135 s
$\nu_{17}(B_2)$	466 s	480 m	477 s	461 s	458 s	467 m	l62 s
$\nu_2(A_1)$	506 vw	520 m	516 s	524 m	529 s	518 vw	524 s
2(1)	547 s	555 s	555 s	564 vw	565 w	540 vw	40 vw
$\nu_{16}(B_2)$	576 m	580 mb	582 wb	592 vw	584 w	576 s	583 w
$\nu_1(\mathbf{A}_1)$	585 vw	590 mb	590 wb		595 w		595 w
$\nu_{12}(B_1)$		602 w	602 vw		633 m		610 w
$\nu_8(A_2)$		651 vw	651 vw		668 m		650 m

In context with the vibration spectra of niobium phosphorus sulphides, Ag₄P₂S₇ vibration frequencies have been given for comparison [13]. These spectral data differ from the Ag₄P₂S₇ frequencies summarized in Table 1. According to the key frequencies of the known thiophosphates [1–8, 14–18], the Ag₄P₂S₇ spectrum of Queignec et al. [13] shows that neither $Ag_2P_2S_6$, $Ag_4P_2S_6$, and sulfur nor $Ag_4P_2S_7$, with its characteristic 399 cm⁻¹ Raman band, are present. Therefore, it appears that Ag₃PS₄ and other thiophosphate species are components of the investigated sample. Indeed the Ag₄P₂S₇ vibration frequencies of Queignec et al. [13] are contrary to those of Na₄P₂S₇ [12] and the data of Table 1, but we consider that spectrum [13] to be an independent indication for the existence of higher thiophosphate species of the type $P_n S_{3n+1}^{(n+2)^-}$ discussed below.


Structural Parameters

All structural parameters used (mean values) were taken from the crystal structure determination of Ag₄P₂S₇ [9], and are summarized in Table 2 and designated in Figure 3.

TABLE 2 Structural Parameters (Mean Values) Used for Vibrational Analysis (Distances in A, Angles in °) [9].

P1-S1	2.125 Å
P1-S2	2.030 Å
P1-S4	2.031 Å
≯ P1-S1-P2	113.4°
≯ S4-P1-S5	114.2°
≯ S2-P1-S4	112.1°
≯ S1-P1-S4	110.0°
Atomic weights: P: 30.9738 S:	32.064

FIGURE 3 The P₂S₇⁴⁻ molecular model with C_{2v} symmetry and designation of the valence coordinates.

Valence and Symmetry Coordinates

Valence and symmetry coordinates of Al₂Cl₇ from Rytter [19] were applied for vibrational analysis of P₂S₇⁴. The valence coordinates contain the changes of bond lengths, angles, and both torsions, which are defined by

$$\tau_1 = \tau_{P2-S1-P1-S2}$$
 and $\tau_2 = \tau_{P1-S1-P2-S3}$ (4)

Of the 6 angles with P1 as the origin of coordinates (analogous to P2), only 5 are variable independently. A set of 21 independent valence coordinates results in accordance with the number of expected frequencies. Table 3 lists the valence coordinates in the particular symmetry species used for the construction of the set of symmetry coordinates.

TABLE 3 Types of Valence Coordinates Used for the Construction of the Symmetry Coordinates (See Figure 3 and Ref. 19).

Species	Valence Coordinates		
A ₁	$r, s, t, \alpha, \gamma, \delta, \epsilon$		
A ₁ A ₂ B ₁ B ₂	t, γ, δ, τ		
B ₁	t, γ, δ, τ		
B ₂	$r, s, t, \gamma, \delta, \epsilon$		

Normal Coordinate Analysis

Frequencies and force constants were calculated using the model of the general valence force field, which considers only forces between chemically bonded atoms. Initially a simple force field using valence coordinates was assumed, using force constant estimates qualitatively evolved from compounds such as $P_2S_6^{-2}$ [20]. The title ion contains the following numerical parameters (in mdyn/Å): $f_r = 1.7$, $f_s = f_t = 2.5$, $f_{\varphi} = 0.2$ ($\varphi = \alpha$, β , ϵ), $f_{\varphi} = 0.3$ ($\varphi = \gamma$, δ), $f_{\tau} = 0.12$ and $f_{ww} = 0.3$ for all interactions with common atoms.

The initial force constant matrix in terms of the symmetry coordinates was calculated with the *T* transformation [21, 22] according to Equation 5:

$$F = T' \cdot f \cdot T \tag{5}$$

Its diagonal elements are summarized in Table 4. The eigenvalue matrix Λ is obtained by solving the problem [22] $G \cdot F \cdot L = L \cdot \Lambda$, and is used to calculate the frequencies. As shown in Table 5 these data agree very well with the experimental frequencies, so that their faithful assignment can be made together with qualitative considerations. The substitution of the calculated frequencies by the observed frequencies gave the final force field in terms of symmetry coordinates with receipt of the L matrix. Its diagonal elements are also listed in Table 4. The unobserved frequencies $\nu_7(A_1)$, $\nu_{11}(A_2)$, and $\nu_{15}(B_1)$ are calculated values.

TABLE 4 Symmetry Force Constants (mdyn/Å) for the $P_2S_7^{4-}$ Ion (Normalization Based on Ref. 19). a. Initial Force Field; b. Final Force Field.

Species	Symmetry Coordinate	а	b
A ₁	S ₁ (r)	2.00	1.96
	$S_2(s)$	2.50	2.41
	S ₃ (t)	2.80	2.73
	$S_4(\alpha)$	0.20	0.19
	$S_5(\gamma)$	0.60	0.44
	$S_{6}(\delta)$	0.55	0.45
	$S_{7}(\epsilon)$	0.30	0.27
A_2	$S_8(t)$	2.20	2.22
7.2	$S_9(\gamma)$	0.30	0.28
	$S_{10}(\delta)$	0.30	0.30
	$S_{11}(au)$	0.12	0.12
B₁	$S_{12}(t)$	2.20	2.17
	$S_{13}(\gamma)$	0.30	0.29
	$S_{14}(\delta)$	0.30	0.28
	$S_{15}(\tau)$	0.12	0.12
B_2	S ₁₆ (r)	1.40	1.37
	S ₁₇ (s)	2.50	2.53
	S ₁₈ (t)	2.80	2.85
	$S_{19}(\gamma)$	0.60	0.54
	$S_{20}(\delta)$	0.55	0.49
	$S_{21}(\epsilon)$	0.30	0.27

TABLE 5 Calculated and Observed Frequencies (cm $^{-1}$) of the $P_2S_7^{4-}$ lon. a. Calculated from the Initial Force Field; b. Experimental Frequencies of $Ag_4P_2S_7$.

•		•	- .
		ibration quencies	
Specie	s a	b ⁵	PED terms ^a
$A_1 \nu_1$	596	588	54s + 30t
ν_2	498	511	42r + 20s + 19t
ν_3	405	399	49t + 24r
ν_4	284	269	$72\delta + 22s + 22\alpha + 19\gamma$
ν_5	211	176	62γ
ν_6	124	118	$84\dot{\epsilon} + 27r + 21\gamma$
ν_7	66	66°	$66\alpha + 22\delta + 15\epsilon$
$A_2 \nu_8$	629	651	63 <i>t</i>
ν_9	260	243	$36\gamma + 34t + 17\tau$
ν_{10}	168	168	$77\delta + 18\gamma$
ν_{11}	58	58°	$73\tau + 15\gamma$
$B_1 \nu_{12}$	603	602	73 <i>t</i>
ν_{13}	040	294	$63\delta + 34\tau$
ν_{14}	247	243	$70\gamma + 20t$
ν_{15}	101	101°	$60\tau + 21\delta + 15\gamma$
$B_2 \nu_{16}$	571	579	66s + 31t
ν_{17}	483	472	$54r + 31t + 28\delta$
ν_{18}	423	433	34t + 23r
ν_{19}	225	208	$94\gamma + 39\epsilon + 21\delta + 19r$
ν_{20}	211	201	$27\dot{\gamma} + 19\epsilon$
ν_{21}		132	$81\delta + 70\epsilon$

^aPED terms below 15 are omitted.

^bThe observed frequencies are FIR/IR and Raman mean values. ^cUnobserved frequencies estimated by the authors.

Potential Energy Distribution (PED)

PED terms calculated from the final force field are summarized in Table 5 [23]. By use of those PED terms the vibrational coupling in a species can be discerned. There are mostly coupled vibrations in $P_2S_7^{4-}$, with only a few exceptions. Vibrations that are mainly dependent of one symmetry coordinate are $\nu_5(A_1)$, $\nu_8(A_2)$, and $\nu_{12}(B_1)$. Weak coupling has been found for $\nu_{10}(A_2)$, $\nu_{11}(A_2)$, and $\nu_{14}(B_1)$. These vibrations can still be considered sufficiently characteristic. The $\nu_1(A_1)$ and $\nu_{16}(B_2)$ vibrations must originate from terminal bonds. All the other vibrations cannot be regarded as characteristic.

Mean Amplitudes of Vibration

The mean amplitudes of vibration calculated from the final force field are given in Table 6 for all distances in $P_2S_7^{4-}$ at three temperatures [24]. Comparison with published data [1, 20] shows agreement for similar bonds.

TABLE 6 Mean Amplitudes of Vibration (Å Units) for All Distances and Three Temperatures.

Distances	T = 0 K	298 K	773.15 K
P1-S1	0.050	0.060	0.086
P1-S2	0.045	0.050	0.070
P1-S4	0.045	0.050	0.069
P1…P2	0.060	0.101	0.158
S4…S5	0.064	0.093	0.143
S2…S4	0.062	0.085	0.130
S1…S4	0.062	0.089	0.137
S1S2	0.068	0.108	0.169
P2…S2	0.068	0.110	0.172
P2⋯S4	0.078	0.144	0.228
S4···S6	0.118	0.219	0.345
S4…S7	0.075	0.146	0.231
S3S4	0.083	0.155	0.246
S2···S3	0.086	0.164	0.261

Thermal Behavior of the Title Compounds

The differential—thermo—analytical (DTA) measurements of the pyrothiophosphates investigated gave differing curves. Na₂FeP₂S₇ shows only one distinct DTA effect at 439 \pm 5°C, which is attributed to its melting point. Na₄P₂S₇ yields two thermal effects at 340°C and 415°C, in accordance with the Na₂S–P₄S₁₀ phase diagram [25]. These effects are caused by the peritectic Na₄P₂S₇ decomposition (343°C and 420°C [25]). The Ag₄P₂S₇ DTA curvature is complex and shows five thermal effects. In the Ag₂S–P₄S₁₀ phase diagram [26, 27], four effects can be assigned to phase changes and to the melting/crystallization temperature at 568 \pm 5°C(575 \pm 5°C [27]).

Decathiotriphosphate $P_3S_{10}^{5-}$ and $P_nS_{3n+1}^{(n+2)-}$ Homologues

Since PS_3^- ions exist in the equilibrium system of thiophosphates at higher temperatures according to $P_2S_6^{2^-} \rightleftharpoons 2PS_3^-$, these ions can equilibrate with $P_2S_7^{4^-}$ to $P_3S_{10}^{5^-}$ and $P_nS_{3n+1}^{(n+2)^-}$ species. This equilibration is indicated by the change in the $Ag_4P_2S_7$ Raman spectrum over a period of several weeks, in which time a new strong Raman band around 375 cm⁻¹ is observed (cf. Table 1). The Raman frequency near 550 cm⁻¹ can also be interpreted as an indication for the $P_3S_{10}^{5^-}$ ion.

A high temperature synthesis of an Ag₅P₃S₁₀ stoichiometry charge yielded a crystalline homogeneous brown product similar to the Ag₄P₂S₇ compound (900°C, slow cooling). The Raman spectrum can be interpreted as being unrestricted by a mixture of Ag₂P₂S₆ and Ag₄P₂S₇. Using the Ag₂S-P₄S₁₀ phase diagram [26], the Ag₅P₃S₁₀ sample was tempered in a temperature gradient of 400-420°C for four days. Four partly separated solid regions were formed with different colorings (orange, vellowbrown, pale yellow, and brown). The three phases previously mentioned could be identified safely as Ag₂P₂S₆/Ag₄P₂S₇ mixtures and Ag₄P₂S₇, respectively. The brown phase produced at 420°C is noteworthy. The Raman band around 375 cm⁻¹ appears to be intense beside the main band of P₂S₇⁴⁻ at 399 cm⁻¹. Raman bands of phosphorus sulphides [28] are not present in the spectrum. Traces of sulfur and/or polysulphides [29–31] cannot be excluded definitively. Therefore, two possible interpretations must be considered:

1. The $P_2S_6^{4-}$ ion was produced by the redox re-

$$P_2S_6^{2-} + S^{2-} \rightleftharpoons P_2S_6^{4-} + S$$
 (6),

and the Raman frequency at 375 cm^{-1} arises from $P_2S_6^{4-}$ with its characteristic band around $370-380 \text{ cm}^{-1}$ [1, 14–16].

2. On the other hand, $P_2S_7^{4-}$ and $P_2S_6^{2-}$ (PS_3^{-}) can equilibrate to $P_3S_{10}^{5-}$ and $P_nS_{3n+1}^{(n+2)-}$ homologues with $n \ge 4$. The previously mentioned 375-cm⁻¹ Raman band can also originate from the $P_3S_{10}^{5-}$ and $P_nS_{3n+1}^{(n+2)-}$ species, which may be present in a mixture together with $P_2S_7^{4-}$ and $P_2S_6^{2-}$.

Vibrational analysis for the $P_3S_{10}^{5-}$ group with C_{2v} symmetry yields 33 Raman active vibrations expected to be close to the $P_2S_7^{4-}$ frequencies. In the isoelectronic $Al_2Cl_7^--AlCl_3$ system Rytter et al. [32] and Dymek et al. [33] found only a few more vibrational bands for $Al_3Cl_{10}^-$. This can be explained by noting that vibrations of the smallest units of the oligomers create adequate vibration bands. The

 $Ag_4P_2S_7$ vibration spectrum of Queignec et al. [13] as well as the spectral data presented indicate that the existence of $P_3S_{10}^{5-}$ and $P_nS_{3n+1}^{(n+2)-}$ species in the $Ag_2S-P_4S_{10}$ system can not be ruled out.

ACKNOWLEDGMENTS

We thank D. Grünewald for recording Raman spectra and Fonds der Chemischen Industrie for financial support.

REFERENCES

- [1] S. J. Cyvin, B. N. Cyvin, C. Wibbelmann, R. Becker, W. Brockner, M. Parensen, Z. Naturforsch., 40a, 1985, 709.
- [2] R. Becker, W. Brockner, B. Eisenmann, Z. Naturforsch., 42a, 1987, 1309.
- [3] C. Wibbelmann, W. Brockner, B. Eisenmann, H. Schäfer, Z. Naturforsch., 38b, 1983, 1575.
- [4] W. Brockner, R. Becker, B. Eisenmann, H. Schäfer, Z. Anorg. Allg. Chem., 520, 1985, 51.
- [5] R. Becker, W. Brockner, Z. Naturforsch., 39a, 1984, 1120.
- [6] W. Roesky, R. Ahlrichs, S. Brode, Angew. Chem., 98, 1986, 9.
- [7] U. Pätzmann, W. Brockner, Z. Naturforsch., 38a, 1983, 27; and the cited literature.
- [8] R. Becker, Ph.D. Thesis, Technical University Clausthal, 1988.
- [9] P. Toffoli, P. Khodadad, N. Rodier, Acta Cryst. B33, 1977, 1492.
- [10] W. Bues, W. Brockner, D. Grünewald, Spectrochim. Acta, 28A, 1972, 1519.
- [11] H. A. Øye, W. Bues, Nucl. Chem. Letters, 8, 1972, 31.
- [12] H. Diederich, HL-Arbeit, Techn. Universität Clausthal, 1977.
- [13] M. Queignec, M. Evain, R. Brec, C. Sourisseau, J. Solid State Chem., 63, 1986, 89.
- [14] W. Brockner, U. Pätzmann, Z. Naturforsch., 38a, 1983, 92.

- [15] R. Becker, W. Brockner, C. Wibbelmann, Z. Naturforsch., 38a, 1983, 555.
- [16] R. Becker, W. Brockner, H. Schäfer, Z. Naturforsch., 38a, 1983, 874.
- [17] H. Falius, Z. Anorg. Allg. Chem., 356, 1968, 189; H. Bürger, H. Falius, Z. Anorg. Allg. Chem., 363, 1968, 24
- [18] C. Sourisseau, J. P. Forgerit, Y. Mathey, J. Solid State Chem., 49, 1983, 134.
- [19] E. Rytter, Ph.D. Thesis, Norges Tekniske Høgskole, Universitetet i Trondheim, Norway, 1974.
- [20] L. Ohse, W. Brockner, Z. Naturforsch., 43a, 1988, 494.
- [21] E. B. Wilson, J. C. Decius, P. C. Cross: Molecular Vibrations, McGraw-Hill, New York, 1955.
- [22] S. J. Cyvin (ed): Molecular Structures and Vibrations, Chapter 6, Elsevier, Amsterdam, 1972.
- [23] S. J. Cyvin, B. N. Cyvin, M. Somer, W. Brockner, Z. Naturforsch., 36a, 1981, 774.
- [24] S. J. Cyvin: Molecular Vibrations and Mean Square Amplitudes, Universitetsforlaget Oslo and Elsevier, Amsterdam, 1968.
- [25] R. Blachnik, U. Rabe, Z. Anorg. Allg. Chem., 462, 1980, 199.
- [26] H. Andrae, R. Blachnik, Thermal Analysis, 35, 1989, 595.
- [27] M. I. Golovei, Yu. V. Voroshilov, I. D. Olekseyuk, A. V. Bogdanova, E. E. Semrad, *Inorg. Mater.* 11, 1975, 1453
- [28] M. S. Somer, Ph.D. Thesis, Technical University Clausthal, 1979.
- [29] J. Weidlein, U. Müller, K. Dehnicke: Schwingungsfrequenzen I, Hauptgruppenelemente, G. Thieme-Verlag, Stuttgart-New York, 1981.
- [30] W. Bues, H. Ziemann, Z. Anorg. Allg. Chem., 456, 1979, 54.
- [31] H. Ziemann, W. Bues, Z. Anorg. Allg. Chem., 455, 1979, 69.
- [32] S. Cyvin, P. Klaeboe, E. Rytter, H. A. Øye, J. Chem. Phys., 52, 1970, 2776; E. Rytter, H. A. Øye, S. J. Cyvin, B. N. Cyvin, P. Klaeboe, J. Inorg. Nucl. Chem., 35, 1973, 1185.
- [33] C. F. Dymek, Jr., J. S. Wilkes, M. A. Einarsrud, H. A. Øye, *Polyhedron*, 7, 1988, 1139.